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This paper is a study of surface effects, e.g. roughness or asymmetrical cut, in the

Laue diffraction of X-rays by crystals, based on the Takagi–Taupin equations. By

means of Riemann–Green integrals, first a formal solution has been obtained

when the entrance and the exit surfaces are arbitrary. Then a coordinate

transformation mapping a propagation domain with arbitrary boundaries into a

rectangular domain with straight boundaries is given. Potential measurement

errors in �-ray wavelength and silicon lattice-parameter measurements by

double-crystal diffractometry and X-ray interferometry, respectively, are

outlined and anticipated by studying, in the two-wave approximation, the

reflection peak shift and extra phase originating from an asymmetrically cut

crystal. A relationship between analyser displacement, interferometer-signal

phase and relative uncertainty in lattice-parameter measurement is also given.

1. Introduction

To determine the Avogadro constant to an accuracy allowing a

redefinition of the kilogram to be based on an atomic standard

and fundamental constants (Becker, 2003; Flowers, 2004; Mills

et al., 2005; Robinson, 2006; Becker, De Bièvre et al., 2007;

Becker, Jentschel et al., 2007), the relative uncertainties of the
28Si lattice parameter and of the binding energy of a neutron in

the 36Cl nucleus must be reduced to 3� 10�9 and 5� 10�8,

respectively. The measurements of these quantities depend

upon the diffraction of X-rays and �-rays in crystals, through

experiments based on X-ray interferometry and �-ray spec-

troscopy (Materna et al., 2006), respectively.

In an X-ray interferometer, the fringe phase in addition to

the wanted lattice parameter records also the roughness of the

crystal surface (Massa et al., 2009). Similarly, in a double-

crystal diffractometer (Becker, Jentschel et al., 2007), the

angular separation between the dispersive and the non-

dispersive diffraction peaks, in addition to the wanted �-ray

wavelength, records also the asymmetry of the crystal surfaces.

Although these asymmetries and surface effects are weaker by

orders of magnitude than the known dynamical diffraction

ones, at the required sensitivity level they influence

measurement results. Therefore, to separate ghosts from

reality, it is necessary to investigate the contribution of the

surface geometry to the diffraction of X-rays and �-rays by

crystals.

In this paper, we model the X-ray diffraction in crystals

without making any restricting assumptions on the shape of

the crystal surfaces. This work is aimed at providing a tool for

the analysis of anomalies (Massa et al., 2005, 2009) which

might originate in the crystal surface, but which are not yet

clearly explained in that way. Our goal is to set the theoretical

framework necessary to investigate numerically, in subsequent

papers, the systematic errors owing to imperfect surface

geometry in the measurement of �-ray wavelengths and the

lattice parameter.

In x2, a two-dimensional crystal model, the relevant Takagi–

Taupin equations and useful domain transformations are

considered. Next, in x3, the equivalence between two different

approaches to take account of the small crystal rotation is

demonstrated; furthermore, the formalism used by Apolloni et

al. (2008) to study X-ray propagation in cylindrical crystals is

extended to arbitrary surfaces by a coordinate transformation,

which maps a propagation domain having arbitrary bound-

aries into a rectangular one with straight boundaries. In x4, a

formula for the link between the ‘deviation of the reflection-

domain centre from the Bragg angle’ and ‘the asymmetry

angle’ is re-obtained by using analytical methods. Finally, to

outline in the simplest way the study of double-crystal

diffractometers and X-ray interferometers and to anticipate

the potential measurement errors, x5 discusses in detail the

reflection peak shift and extra phase originated by an asym-

metrically cut crystal.

2. Takagi–Taupin equations

In order to study the Laue diffraction of X-rays in crystals, we

use the Takagi–Taupin equations (Takagi, 1962, 1969; Taupin,

1964; Authier, 2005; Mana & Montanari, 2004) in the two-

wave approximation of the dynamical theory of X-ray

diffraction. We shall use a two-dimensional model having a

reference frame whose origin is on the entrance crystal

surface. Even though only perfect crystals will be considered,



we write the Takagi–Taupin equations in a general form, with

a lattice distortion term included, since this will help the study

of crystal rotations as a kind of lattice distortion. Lattice

distortion is described by the displacement field uðx; zÞ, which

gives the distance between a point of the distorted lattice and

the same point of a reference perfect lattice, this lattice being

chosen by setting the x axis parallel to the reciprocal vector h0

and the z axis parallel to the Bragg planes.

Let us introduce the Ewald expansion of the dielectric

displacement vector D = Dŷy in � polarization,

D ¼ Do exp i Ko � rð Þ þDh exp iðKh � r� h0 � uÞ
� �

: ð1Þ

Next, if we introduce two new amplitudes do and dh (Apolloni

et al., 2008) defined as

do;h ¼ exp �i
K�o

2

ŝso þ ŝsh

1þ ŝso � ŝsh

� r

� �
Do;h ð2Þ

(note that K�o=2 is the variation of the wavenumber induced

by the index of refraction, and the complete term

Kð�o=2Þðŝso þ ŝshÞ/ð1þ ŝso � ŝshÞ is the vector connecting the

Lorentz and Laue points), the Takagi–Taupin equations can

be rewritten as

�i ŝso � rdo ¼
K�h

2
dh; ð3Þ

�i ŝsh � rdh ¼
K�h

2
do þ ŝsh � rðh0 � uÞ

� �
dh; ð4Þ

where ŝso = K̂Ko = � sin �Bx̂x + cos �Bẑz and ŝsh = K̂Kh = sin �Bx̂x +

cos �Bẑz are unit propagation vectors, �B being the Bragg angle

(with a sign), h0 = 2K sin �Bx̂x, Kh = Ko þ h0, K = kKok = kKhk =

2��=c is the modulus of the wavenumber vector Ke of the

incoming radiation (with frequency �), and the complex

parameters �o, �h and ��h are the Fourier components of

electric susceptibility. As we are interested in silicon crystals,

we shall study only the case ��h = �h.

2.1. Crystal surfaces

We shall consider a monochromatic source, having finite

width (1 mm), and illuminating at the exact Bragg condition

an infinite crystal slab, the surfaces of which are smooth curves

in the reflection plane (Fig. 1). They will be denoted Cð�Þ on

the entrance surface and Rð�Þ on the exit surface, and given in

a parametric form as [�x = �, �z = f1ð�Þ], and [�x = �, �z =

T þ f2ð�Þ], where f1 and f2 are arbitrary differentiable func-

tions and T is a parameter which reduces to the thickness

when f1 = f2 = 0. By requiring f1ð�Þ < T þ f2ð�Þ, we prevent

any intersection between the curves C and R. The parameters

of the curves have been chosen in such a way to have a realistic

representation of the surfaces; see, for example, Fig. 4 of

Massa et al. (2009). Two-dimensional boundaries and coupling

to other diffracted waves should in principle be taken into

account, but they cannot be treated within this formalism and

will be studied in subsequent papers. However, our mathe-

matical treatment can be easily extended to piecewise smooth

curves.

2.2. Initial conditions

Strictly speaking, we should study a three-dimensional

model and impose the continuity of the tangential component

(parallel to the external surface) of the electric field and of the

orthogonal component of the dielectric displacement field.

However, since we are considering a two-dimensional model

and only � polarization, we shall assume ð1þ �Þ ’ 1 and

impose the continuity of the dielectric displacement field.

Then, under the hypothesis that at each point of the entrance

surface the field DðrÞ in equation (1) is equal to the incoming

wave

Do exp iKo � rð Þj� ¼ Aðx; zÞ expðiKe � rÞj�; ð5Þ

the initial conditions are

doðx; zÞj� ¼ exp

�
�i

K�o

2

ŝso þ ŝsh

1þ ŝso � ŝsh

� r

�
Uðx; zÞj� ð6Þ

dhðx; zÞj� ¼ 0; ð7Þ

where

�ðx; zÞj� ¼ Aðx; zÞ exp iðKe � KoÞ � r
� �

j�: ð8Þ

We recall that we have chosen kKek = kKok = 2��=c, without

assuming any hypothesis about the continuity of the tangential

components of the wavevectors; furthermore, the vector Ko

has been defined as satisfying the Bragg law independently of

the direction of incidence of the incoming field. However, in

some cases we shall exploit the choice Ko = Ke. A discussion

about other possible choices, such as kKok = nkKek with n the

index of refraction, and the relevant form of the equations and

the initial conditions can be found in Gronkowski (1991).

2.3. The Riemann–Green method

A solution of (3, 4), with u = 0 and initial conditions (6, 7),

can be found by quadrature via the Riemann–Green method

(Sommerfeld, 1964; Authier & Simon, 1968; Takagi, 1969;

Thorkildsen & Larsen, 1998); hence,

do;hðx; zÞ ¼

Z
�

Go;hðx� �x; z� �zÞ doð�x;�zÞ
ŝso � n̂n�

cos �B

d�; ð9Þ

where the unit vector n̂n� = ½�ðd�z=d�Þ x̂xþẑz�=½1þðd�z=d�Þ2�1=2

is the inward normal to C and d� is a shorthand form for
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Figure 1
Example of a crystal slab with rough entrance surface �ð�Þ and rough exit
surface �ð�Þ. The unit propagation vectors ŝso and ŝsh and the oriented
Bragg angle �B are also shown. The vertical lines represent the Bragg
planes.



kdC=d�k d�. By use of the same notation as Palmisano & Zosi

(2005), the kernels Go and Gh in (9) are

Goðx; zÞ ¼ 	ðxþ z tan �BÞ �
K

4j sin �Bj
�h��hð Þ

1=2

�Hðzj tan �Bj þ xÞHðzj tan �Bj � xÞ

�

�
z tan �B � x

z tan �B þ x

�1=2

� J1

�
K

2j sin �Bj
�h��hð Þ

1=2 z2 tan2 �B � x2
� �1=2

	

ð10Þ

and

Ghðx; zÞ ¼
i

4

K�h

j sin �Bj
H zj tan �Bj þ xð ÞH zj tan �Bj � xð Þ

� J0

�
K

2j sin �Bj
�h��hð Þ

1=2
z2 tan2 �B � x2
� �1=2

	
; ð11Þ

where HðzÞ is the Heaviside function and J0ðzÞ and J1ðzÞ are

the Bessel functions of the first kind and order 0 and 1,

respectively.

2.4. Domain transformation

An alternative to the computation of formula (9) is to solve

the equations (3) and (4) numerically. To avoid the problem of

assigning the initial conditions on an arbitrary surface, when

f1ðxÞ � z � T þ f2ðxÞ, we introduce the propagation coordi-

nate


 ¼ T
z� f1ðxÞ

T þ f2ðxÞ � f1ðxÞ
: ð12Þ

In this way the crystal surfaces are given by �x = � and �
 = 0,

and �x = � and �
 = T, that is, the transformation (12) maps a

domain having irregular boundaries into a rectangular one.

The inverse transformation can easily be calculated; it is

z ¼ f1ðxÞ þ ð
=TÞ T þ f2ðxÞ � f1ðxÞ
� �

: ð13Þ

By applying the chain rule to equations (3) and (4), i.e. @=@z =

ð@
=@zÞ@=@
 and similar expressions, and exploiting the

elements of the Jacobian matrix J,

Jðx; 
Þ ¼
@x=@x @x=@z

@
=@x @
=@z

� �

¼

1 0

ð
� TÞ f 01ðxÞ � 
 f 02ðxÞ

T þ f2ðxÞ � f1ðxÞ

T

T þ f2ðxÞ � f1ðxÞ

0
@

1
A; ð14Þ

we have

� sin �B

@ ~ddo

@x
þ

T cos �B � ½ð
� TÞ f 01ðxÞ � 
 f 02ðxÞ� sin �B

T þ f2ðxÞ � f1ðxÞ

@ ~ddo

@


¼ ði=2ÞK��h
~ddh; ð15Þ

sin �B

@ ~ddh

@x
þ

T cos �B þ ð
� TÞ f 01ðxÞ � 
 f 02ðxÞ
� �

sin �B

T þ f2ðxÞ � f1ðxÞ

@ ~ddh

@


¼ ði=2ÞK�h
~ddo þ i ŝsh � rðx;zÞðh0 � uÞ

� �
~ddh; ð16Þ

where ~ddo = do½x; zðx; 
Þ�; ~ddh = dh½x; zðx; 
Þ�. In this case, the

initial conditions (6) and (7) become

~ddoðx; 0Þ ¼ exp

�
�i

K�o

2 cos �B

f1ðxÞ

	
�½x; f1ðxÞ�; ð17Þ

~ddhðx; 0Þ ¼ 0; ð18Þ

where we chose Ke = Ko. The subscript in rðx;zÞ indicates that

h0 � u must be differentiated with respect to the x and z vari-

ables. The initial propagation coordinate can be restored in

the solutions of (15) and (16) by inverse transformation (13).

Hence,

Do;hj� ¼ Do;h x;T þ f2ðxÞ
� �

¼ exp i
K�o

2 cos �B

h
T þ f2ðxÞ

i
 �
~ddo;hðx; 
 ¼ TÞ; ð19Þ

where the definition (2) has been used.

3. Small crystal rotations

In this section we shall study two equivalent methods to treat

small deviations of the incoming beam from the exact Bragg

condition, either by considering a small rotation of the whole

crystal or by inserting a distortion term into equation (4). In

the first approach we shall have a change of the initial

conditions and an extra phase term in the Ewald expansion

(1); this latter term is generated by a change of reference

frame. In the second, in order to demonstrate the just

mentioned equivalence, we shall eliminate the distortion term

by a change of dependent variables and obtain the same initial

conditions as in the first approach. Finally, we shall demon-

strate that the two Ewald expansions coincide.

In the last subsection we shall see how to eliminate the

distortion term in the domain transformation approach.

3.1. Equivalence between rotation and distortion

A crystal rotation by an angle � around an axis orthogonal

to the reflection plane is equivalent to a rotation of the

incoming X-ray beam by an angle ��. Consequently, in the

crystal reference frame the Ewald expansion (1) and the

Takagi–Taupin equations (3) and (4), where ½ŝsh � rðh0 � uÞ�

vanishes because we are considering a perfect crystal, are left

unchanged, but the initial conditions have to be modified

accordingly. When we start from the incoming wave (5),

equation (8) becomes

�ðx; zÞj� ¼ Aðx; zÞj�0 exp i K0e � Koð Þ � r
� �

j�; ð20Þ

where C0 = Rð�ÞC is the entrance surface rotated by an angle

�, Rð�Þ being the relevant rotation matrix,

Rð�Þ ¼
cos� sin �
� sin � cos�

� �
; ð21Þ
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and K0e = Rð��ÞKe is the incoming wavevector rotated by an

angle ��. Note that, according to definition (19), clockwise

rotations correspond to positive angles. Let us choose Ke = Ko.

Since second-order terms such as �2 can be neglected, so can

K0e � Ko ’ ��ðKo;zx̂x� Ko;xẑzÞ, and since, in addition, the

transverse width of the incoming X-ray beam and the crystal-

boundary deviation from the x axis are small enough to allow

the approximation Aðx; zÞj�0 ’ Aðx; zÞj� to be made, then

equation (6) becomes

doðx; zÞj� ’ exp

�
�i

K�o

2

ŝso þ ŝsh

1þ ŝso � ŝsh

� r

�
j�Að�x;�zÞ

� exp �i� Ko;z�x � Ko;x�z

� �� �
: ð22Þ

Eventually, by using equation (2) for the inverse transforma-

tion do;h ! Do;h, and by use of the substitutions x = ðxlab�

�zlabÞ and z = ðzlab + �xlabÞ in the exponential terms of equa-

tion (1), we obtain

D ¼ Do exp i Ko � rþ iK� x cos �B þ z sin �Bð Þ
� �

þDh exp i Kh � rþ iK� x cos �B � z sin �Bð Þ
� �

; ð23Þ

which is the Ewald expansion in term of the coordinates x and

z, the superscript ‘lab’ having been omitted, of the laboratory

reference frame.

Now we can show how this approach is equivalent to

considering small rotations of the whole crystal as a very

special kind of distortion, even in the case of surfaces with

arbitrary shape. Indeed, let us assume firstly that h0 is inde-

pendent of rotations; secondly, that, as the origin of the

reference frame is on the entrance surface, the rotation

displacement is

urot
ðx; zÞ ¼ ðx̂x; ẑzÞ½Rð�Þ � 1�

x

z

� �
; ð24Þ

where 1 is the identity matrix of size 2, and can be approxi-

mated by

urot
ðx; zÞ ’ �zx̂x� �xẑz; ð25Þ

thirdly, that the crystal surfaces are left unchanged by rota-

tions. From equation (25) we find the explicit expression

ŝsh � r h0 � u
rot

ð Þ ¼ 2K� sin �B cos �B; ð26Þ

for the last term in equation (4) when u = urot. By a change of

the dependent variable, this distortion term ŝsh � rðh0 � u
rotÞ can

be eliminated in equation (4), and the effect of rotation about

the vertical axis can be included in new initial conditions. Let

us introduce the two unknowns d̂do and d̂dh defined as

d̂do;h ¼ exp �i 2K sin �B f ðx; zÞ
� �

do;h; ð27Þ

where

f ðx; zÞ ¼
�

2
cos �B

x

sin �B

þ
z

cos �B

� �
; ð28Þ

and substitute into equations (3) and (4); the Takagi–Taupin

equations then reduce to the unperturbed form, which can be

solved by the Riemann–Green method,

�i ŝso � rd̂do ¼
K��h

2
d̂dh; ð29Þ

�i ŝsh � rd̂dh ¼
K�h

2
d̂do; ð30Þ

with the initial conditions

d̂doðx; zÞj� ¼ exp �i� Ko; z�x � Ko; x�z

� �� �
� exp �i

K�o

2

ŝso þ ŝsh

1þ ŝso

� ŝsh � r

� �
j�A �x;�z

� �
; ð31Þ

d̂dhðx; zÞj� ¼ 0: ð32Þ

To obtain equation (31) we have exploited the choice Ke = Ko,

the equality ðKo;x;Ko;zÞ = ð�K sin �B;K cos �BÞ, and equations

(6), (8), (27) and (28). We remark that the initial conditions

(22) and (31) are identical and, after applying the inverse

transformation d̂do;h ! do;h ! Do;h and substitution of Do;h in

equation (1), the Ewald expansion coincides with equation

(23). Hence the two approaches, crystal rotation and lattice-

plane distortion, are equivalent as long as the approximations

about �, � and � remain valid.

3.2. Different methods: integral and differential

By using the Riemann–Green method (x2.3) to solve system

(29) and (30) with the initial conditions (31) and (32) and by

using equations (27) and (2) for the inverse transformation

d̂do;h ! do;h !Do;h, we find the explicit solution to system (29,

30), calculated on the exit surface �, for the two fields in the

Ewald expansion (1),

Do;hðx; z; �Þj� ¼ exp

�
i
K�o

2

ŝso þ ŝsh

1þ ŝso � ŝsh

� ð�xx̂xþ�zẑzÞ

	

� exp i� Ko;z�x � Ko;x�z

� �� �
�

Z
�

Go;hðx� �x; z� �zÞ

� exp �i� Ko;z�x � Ko;x�z

� �� �

� exp

�
�i

K�o

2

ŝso þ ŝsh

1þ ŝso � ŝsh

� �xx̂xþ �zẑz
� �	

� A �x;�z

� � ŝso � n̂n�

cos �B

d�: ð33Þ

A more general form of f , useful for distorted lattices, was

derived by Apolloni et al. (2008). However, for computer-

aided calculations, the formal solution (33) is less manageable

than equations (15) and (16). Also, in the domain-transfor-

mation approach a distortion term with u = urot can be

eliminated. Indeed, by introducing two new unknowns ~DDo and
~DDh ,

~DDo;h ¼ exp �i 2K sin �Bgðx; 
Þ
� �

~ddo;h; ð34Þ

where

gðx; 
Þ ¼
�

2

x

tan �B

þ



T
T þ f2ðxÞ � f1ðxÞ
� �

þ f1ðxÞ


 �
; ð35Þ
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and by substituting equation (34) into equations (15) and (16)

we re-obtain the unperturbed form of the Takagi equations.

Now the initial conditions are

~DDoðx; 0Þ ¼ exp �i 2K sin �B gðx; 0Þ
� �

� exp �i
K�o

2 cos �B

f1ðxÞ

� 	
� x; f1ðxÞ
� �

; ð36Þ

~DDhðx; 0Þ ¼ 0; ð37Þ

and the chain of identities (19) becomes

Do;hðx; zÞj� ¼ Do;h x;T þ f2ðxÞ
� �

¼ exp i
K�o

2 cos �B

T þ f2ðxÞ
� �
 �

� exp i 2K sin �B gðx; 
 ¼ TÞ
� �

~DDo;hðx; 
 ¼ TÞ:

ð38Þ

4. Asymmetrically cut crystal

Let us consider the case f1ðxÞ = f2ðxÞ = x tan ’, shown in Fig. 2,

with constraint j’j < ð�=2Þ � j�Bj. Then the last term in

equation (9) is

ŝso � n̂n�

cos �B

d� ¼ ð1þ tan ’ tan �BÞ dx0; ð39Þ

where x0 is a dummy variable; the product between the

Heaviside functions in equations (10) and (11), calculated at

[�xðxÞ� �xðx
0Þ, �zðxÞ� �zðx

0Þ], becomes

H �zðxÞ � �zðx
0Þ

� �
j tan �Bj þ�xðxÞ � �xðx

0Þ
� 

�H �zðxÞ � �zðx

0
Þ

� �
j tan �Bj ��xðxÞ þ �xðx

0
Þ

� 

¼ H Tj tan �Bj þ ðx� x0Þ 1þ tan ’j tan �Bjð Þ

� �
�H Tj tan �Bj � ðx� x0Þ 1� tan ’j tan �Bjð Þ

� �
; ð40Þ

and the Dirac delta function in equation (10) becomes

	 �xðxÞ � �xðx
0Þ þ �zðxÞ � �zðx

0Þ
� �

tan �B

� 

¼ 	 T tan �B 1þ tan ’ tan �Bð Þ

�1
þx� x0

� �
= 1þ tan ’ tan �B

�� ��:
ð41Þ

The initial condition (8), with Ke = Ko, is

� x0; z0ð Þj� ¼ A x0; x0 tan ’ð Þ: ð42Þ

By substituting equations (39) to (42) into equation (33) and

by using the change of variable x� x0 = �, we have

Doðx;T þ x tan ’; �Þ

¼ exp iKT
�o

2 cos �B

1þ tan ’ tan �Bð Þ
�1

� 	

� A
T tan �B

1þ tan ’ tan �B

þ x;
T tan �B

1þ tan ’ tan �B

þ x

� �
tan ’

� 	

�
K

4j sin �Bj
�h��hð Þ

1=2exp iKT
�o

2 cos �B

þ � sin �B

� �� 	

�

ZTj tan �Bj=ð1�tan ’j tan �BjÞ

�Tj tan �Bj=ð1þtan ’j tan �BjÞ

ðT þ � tan ’Þ tan �B � �

ðT þ � tan ’Þ tan �B þ �

� 	1=2

� J1

K

2j sin �Bj
�h��hð Þ

1=2
ðT þ � tan ’Þ2 tan2 �B � �

2
� �1=2


 �

� exp i
<ð�oÞ tan ’

2 cos �B

þ cos �B þ tan ’ sin �Bð Þ�

� 	
K�


 �

� exp �
=ð�oÞ tan ’

2 cos �B

K�

� 	
A x� �; ðx� �Þ tan ’½ �

� 1þ tan ’ tan �Bð Þ d� ð43Þ

and

Dhðx;T þ x tan ’;�Þ

¼
i

4

K�h

j sin �Bj
exp iKT

�o

2 cos �B

þ � sin �B

� �� 	

�

ZTj tan �Bj=ð1�tan ’j tan �B jÞ

�Tj tan �B j=ð1þtan ’j tan �BjÞ

J0

n K

2j sin �Bj
�h��hð Þ

1=2

� ðT þ � tan ’Þ2 tan2 �B � �
2

� �1=2
o

� exp i
< �oð Þ tan ’

2 cos �B

þ cos �B þ tan ’ sin �Bð Þ�

� 	
K�


 �

� exp �
= �oð Þ tan ’

2 cos �B

K�

� 	
A½x� �; ðx� �Þ tan ’�

� 1þ tan ’ tan �Bð Þ d�: ð44Þ

From (43) and (44) we note that the most significant effect of

the asymmetrical cut is a translation of the rotation angle � by

an amount equal to

�� ¼ �
<ð�oÞ tan ’

2ð1þ tan ’ tan �BÞ cos2 �B

¼
<ð�oÞð1� �Þ

2 sin 2�B

; ð45Þ

where � is by definition the asymmetry ratio cosð�Bþ ’Þ/
cosð�B� ’Þ. Apart from signs depending on conventions about

rotations, the angle �� in (45) coincides with the deviation of

the reflection-domain centre from the Bragg angle (cf.

Authier, 2005, p. 85).
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Figure 2
Layout of a parallel-sided asymmetrically cut crystal. The symbol �ð�Þ is
the entrance surface, �ð�Þ is the exit surface and ’, with the constraint
j’j< ð�=2Þ � j�Bj, is the oriented asymmetry angle. The Borrmann fan is
also shown.



5. Numerical simulation

In numerical calculations, carried out by application of

MATHEMATICA (Wolfram Research, 2009), we have

considered the 220 reflections of a silicon lamella, 500 mm

thick, and a 17 keV Mo K�1 X-ray source. The angle �B has

been chosen accordingly and the values of the dielectric

susceptibilities, �o and ��h , have been taken from Sergey

Stepanov’s X-ray Server (http://sergey.gmca.aps.anl.gov/). For

the z components of the entrance and exit surfaces, �zðxÞ =

f1ðxÞ and �zðxÞ = T þ f2ðxÞ, respectively, we chose f1ðxÞ = f2ðxÞ

= x tan ’, and for the distortion term we chose u = urot. In this

case the function g in (35) reduces to

gðx; 
Þ ¼
�

2

x

tan �B

þ 
þ f1ðxÞ

� 	
; ð46Þ

the Takagi–Taupin equations (15, 16) for the field amplitudes

(34) reduce to

� sin �B

@ ~DDo

@x
þ

cosð�B � ’Þ

cos ’

@ ~DDo

@

¼

i

2
K��h

~DDh ð47Þ

sin �B

@ ~DDh

@x
þ

cosð�B þ ’Þ

cos ’

@ ~DDh

@

¼

i

2
K�h

~DDo; ð48Þ

and the initial conditions (36, 37) become

~DDoðx; 0Þ ¼ exp �iK�x 1þ tan ’ tan �Bð Þ cos �B

� �
� exp �i

K�o

2 cos �B

x tan ’

� �
�ðx; x tan ’Þ; ð49Þ

~DDhðx; 0Þ ¼ 0: ð50Þ

The X-ray source has been modelled as a monochromatic

wave Aðx; zÞ expði Ke � rÞ having width w = 1 mm, where (see

Fig. 3)

Aðx; zÞ ¼ p xþ z tan �Bð Þ ð51Þ

and

pðxÞ ¼

cos2ð3�x=wÞ if �w=2 � x<�w=3;
1 if �w=3 � x � w=3;
cos2ð3�x=wÞ if �w=3< x � w=2;
0 otherwise:

8>><
>>:

ð52Þ

5.1. Rocking curves

In order to validate relation (45) between the peak shift ��
and the asymmetry angle ’, we considered different cases, the

asymmetry angle ’ ranging from�7�B to 7�B, and the rotation

angle � from�25 mrad to 25 mrad. As an example of output, in

Figs. 4, 5 and 6 we show the single-crystal rocking curves

Ihð�;’Þ =
R

� jDhð�x;�z;�; ’Þj
2 ŝsh � n̂n� d� for ’ = 0 rad, ’ =

2�B and ’ = �5�B, respectively. When ’ = 0 rad (Fig. 4), the

simulated rocking curve is rigorously symmetric, as can easily

be deduced from equations (44) and from the symmetry

properties of A(x, 0), equation (51), brought about by pðxÞ,

equation (52); in other cases, with a greater modulus of the

asymmetry angle j’j, the asymmetry of the rocking curve is

greater. The shift of the central peaks, or of valleys, of all the

simulated rocking curves is shown in Fig. 7 and agrees with the

value obtained for �� by equation (45). If we substitute the

first-order expansion in ’ of (45),

�� ’ �
<ð�oÞ

2 cos2 �B

’; ð53Þ

into the differential form of the Bragg law

�
=
 ¼ ��=tan �B; ð54Þ

we have the formula

�




’ �
<ð�oÞ

sin 2�B

’ ð55Þ

to estimate measurement errors in wavelength 
 or to impose

an upper limit on ’. However, it is necessary to make further

numerical investigations with higher-energy incoming beams

and thicker crystals.

5.2. Fringe-phase effects

In order to understand the effects of an asymmetrical cut on

the measurement of the lattice parameter by an LLL X-ray

interferometer, we have considered a simplified system

consisting of a single, asymmetrically cut, perfect lamella and

two identical incoming beams, the parameters of which have

been chosen according to equations (51) and (52). This

composite problem can be solved by studying separately the

two single-beam propagations, one in which a beam comes

from the right-hand side (�B > 0) and the other in which a

beam comes from the left-hand side (�B < 0), and then by

recombining the two solutions. Let us introduce the self-

explaining notations ~dd
�B>0
o , ~dd

�B < 0
o , and similarly for h waves,

and consider first the case �B > 0. In this case the Takagi–

Taupin equations (15) and (16), with u = 0, reduce to equations

(47) and (48) for the unknown ~dd
�B>0
o and ~dd

�B>0
h , with the initial

conditions
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Figure 3
Plane wave factor Aðx; 0Þ = pðxÞ used in numerical calculations.



~dd �B>0
o ðx; 0Þ ¼ exp �i

K�o

2 cos �B

x tan ’

� �
p xþ x tan ’ tan �Bð Þ;

ð56Þ

~dd
�B>0
h ðx; 0Þ ¼ 0: ð57Þ

Now, let us consider the case �B < 0. We must observe that,

when we make the transformation �B !��B in equations (47)

and (48) and in initial conditions (56, 57), the solutions ( ~dd
�B < 0
o ,

~dd
�B < 0
h ) of the new system also satisfy the old system (47, 48)

for ( ~dd
�B>0
o , ~dd

�B>0
h ) with the initial conditions

~dd �B>0
o ðx; 0Þ ¼ 0; ð58Þ

~dd
�B>0
h ðx; 0Þ ¼ exp �i

K�o

2 cos �B

x tan ’

� �
p x� x tan ’ tan �Bð Þ;

ð59Þ

provided that we make the change o$ h, that is the

assignment ð ~dd
�B>0
o ; ~dd

�B>0
h Þ = ð ~dd

�B < 0
h ; ~dd

�B < 0
o Þ. By exploiting

this observation and restoring the previous meaning of the

symbols, we can conclude that the linear superposition

ð ~dd
�B>0
o þ ~dd

�B < 0
h , ~dd

�B>0
h þ ~dd

�B < 0
o Þ of the solutions of the two

above cases satisfy equations (47) and (48) with the boundary

conditions (56, 59). However, the conventionally transmitted o

wave, i.e. the first component of the above pair, and the

conventionally reflected h wave, i.e. the second component,

are not the same because the left–right simmetry is broken by

the asymmetrical cut angle ’ 6¼ 0; the symmetry laws are

~dd �B>0
o ðx; 
; ’Þ ¼ ~dd �B < 0

o ð�x; 
;�’Þ; ð60Þ

~dd
�B < 0
h ðx; 
;’Þ ¼ ~dd

�B>0
h ð�x; 
;�’Þ; ð61Þ

and, obviously, for the sum we have

~dd �B>0
o ðx; 
; ’Þ þ ~dd

�B < 0
h ðx; 
;’Þ

¼ ~dd
�B>0
h ð�x; 
;�’Þ þ ~dd �B < 0

o ð�x; 
;�’Þ: ð62Þ

Let us confine ourselves to the conventionally transmitted o

wave. Apart from multiplicative constants, the flux of the

Poynting vector Io, in terms of the previous fields Do and Dh, is
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Figure 4
Calculated rocking curves of 220 reflections for a symmetrically cut
500 mm-thick silicon crystal. A beam of 17 keV X-rays from a
conventional Mo source illuminates the entrance surface.

Figure 5
Calculated rocking curves of 220 reflections for an asymmetrically cut
silicon crystal. The crystal thickness is 500 mm. The asymmetry angle is
2�B. A beam of 17 keV X-rays from a conventional Mo source illuminates
the entrance surface.

Figure 6
Calculated rocking curves of 220 reflections for an asymmetrically cut
silicon crystal. The crystal thickness is 500 mm. The asymmetry angle is
�5�B. A beam of 17 keV X-rays from a conventional Mo source
illuminates the entrance surface.

Figure 7
Deviation of the reflection-domain centre �� versus asymmetry angle ’.
Circles refer to the peak shift of simulated rocking curves of 220
reflections for asymmetrically cut silicon crystals. A beam of 17 keV
X-rays from a conventional Mo source illuminates the entrance surface.



Ioð’Þ ¼
R
�

jD
�B>0
o ð�x;�z; ’Þ

þD
�B < 0
h ð�x;�z; ’Þj

2 ŝso � n̂n� d�; ð63Þ

which, by exploitation of (19), can be written in terms of the

new fields ~ddo and ~ddh as

Ioð’Þ ¼

Z
�

exp �
K=ð�oÞ

cos �B

T þ f2ðxÞ
� �
 �

� j ~dd �B>0
o ðx;T;’Þ þ ~dd

�B < 0
h ðx;T; ’Þj2 ŝso � n̂n� d�: ð64Þ

By introduction of the following definitions,

(i) offset

I oð’Þ ¼

Z
�

jD �B>0
o �x;�z; ’

� �
j
2

�

þ jD
�B>0
h �x;�z; ’

� �
j
2
�

ŝso � n̂n� d�

¼

Z
�

exp �
K=ð�oÞ

cos �B

T þ f2ðxÞ
� �
 �

� j ~dd �B>0
o ðx;T;’Þj2

�
þ j ~dd

�B>0
h ðx;T;’Þj2

�
ŝso � n̂n� d�; ð65Þ

(ii) modulation

�oð’Þ ¼

Z
�

D
�B>0
o ð�x;�z; ’Þ

�D
�B<0
h �x;�z;’

� �
ŝso � n̂n� d�

¼

Z
�

exp �
K= �oð Þ

cos �B

T þ f2ðxÞ
� �
 �

� ~dd
�B>0
o ðx;T;’Þ ~dd �B<0

h ðx;T;’Þ ŝso � n̂n� d�; ð66Þ

(iii) extra phase

�oð’Þ ¼ arg �oð’Þ
� �

; ð67Þ

and (iv) visibility

�oð’Þ ¼ 2 j�oð’Þj=Ioð’Þ; ð68Þ

the flux Io can be decomposed in the more significant form

Ioð’Þ ¼ Ioð’Þ 1þ �oð’Þ cos �oð’Þ
� �� 


: ð69Þ

If we operate analogously with the conventionally transmitted

h wave, we obtain a similar expression for Ih . As we are

considering only one lamella, the two fluxes are connected by

a simple inversion operation, i.e. Ihð’Þ = Ioð�’Þ; however, the

same does not hold true for polylithic interferometers. The

calculated flux of the Poynting vector Ioð’Þ and the two

components Ioð’Þ and 2j�oð’Þj cos½�oð’Þ� are shown in Fig. 8;

for the phase �oð’Þ and the visibility �oð’Þ, see Fig. 9. A

magnification of �oð’Þ is also shown in Fig. 10.

If we take into account a translation s of the lamella with its

phase term ð2�=d220Þs, and assume that the total fringe phase

can be decomposed into a linear superposition of two terms,

and the other terms can be replaced by constants, i.e. C0 for

I oð’Þ and C1 for �oð’Þ, then the flux of the Poynting vector

can be approximated as
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Figure 9
Numerical solution of Takagi–Taupin equations. Visibility �oð’Þ =
2j�oð’Þj=I oð’Þ and extra-phase term �o = argð�oÞ of signal versus
asymmetry angle ’. A 500 mm-thick single silicon lamella is illuminated
by two beams of 17 keV X-rays from a conventional Mo source.

Figure 10
Numerical solution of Takagi–Taupin equations. Magnification of the
extra-phase term �o = argð�oÞ of signal versus asymmetry angle ’.

Figure 8
Numerical solution of Takagi–Taupin equations. Flux of Poynting vector,
offset and modulation, versus asymmetry angle ’. A 500 mm-thick single
silicon lamella is illuminated by two beams of 17 keV X-rays from a
conventional Mo source.



Ioð’Þ ’ C0 þ C1 cos
2�

d220

sþ�o½’ðsÞ�


 �
: ð70Þ

The fringe-phase excess, at the end of a lamella displacement

�s, brings about a relative variation of the measured period

�d220

d220

’
��o

2�

d220

�s
; ð71Þ

where ��o ’ ðd�o=d’Þ�’. If we suppose a surface rough-

ness with �zðxÞ ’�zðxÞ ’A sin½ð2�=LÞx�, where A = 5 mm and

L = 100 mm (Massa et al., 2009), the variation �’ of the

asymmetry angle ’ = arctanðd�z=dxÞ will be approximately

0.2� rad and d�o=d’ ’ 0.4. By imposing �d220=d220 ’ 10�9

and substituting the just mentioned values into (71), the

displacement �s must be of the order of 1 cm.

6. Conclusions

We studied X-ray and �-ray propagation in crystals having

arbitrary surfaces. Exact solutions of the relevant Takagi–

Taupin equations have been given in the form of integrals by

use of the Riemann–Green method. In the asymmetrical-cut

case, the exact solutions have been exploited to re-obtain a

known relation between the reflection-domain centre and the

asymmetry angle. Successively, in order to solve the Takagi–

Taupin equations numerically, we introduced a change of

variable which transforms an irregular domain into a

rectangle. After a comparison between two different approa-

ches to small crystal rotation, we studied numerically the

rocking curves for parallel-sided, asymmetrically cut, single

crystals. The peak shifts of the simulated rocking curves were

in agreement with the expected values, which had been

calculated previously by use of the just mentioned relation. A

link between the relative uncertainty in incoming-beam

wavelength and asymmetry angle has also been given.

The effect of surface roughness on the phase of an inter-

ferometer signal has been outlined by a study of the extra-

phase term brought about by a constant asymmetry angle. We

have estimated an analyser displacement of about 1 cm so that

a surface roughness described by 	A sin½ð2�=LÞx�, where A =

5 mm and L = 100 mm, does not cause a deviation larger than

the targeted relative error 10�9. The study of more realistic

cases, with thicker crystals, higher energy and polylithic

systems, will be the subject of future investigations.
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